Minwoo Park
  • Home
  • Nvidia AV Visual Perception
  • Tesla Vision
  • RESUME
  • Publication
  • Past Project

Past Cool Projects

Deformed Lattice Detection in Real-World Images using Mean-shift Belief Propagation.

12/6/2016

Comments

 
Picture
We propose a novel and robust computational framework for automatic detection of deformed 2D wallpaper patterns in real-world images. The theory of 2D crystallographic groups provides a sound and natural correspondence between the underlying lattice of a deformed wallpaper pattern and a degree-4 graphical model. We start the discovery process with unsupervised clustering of interest points and voting for consistent lattice unit proposals. The proposed lattice basis vectors and pattern element contribute to the pairwise compatibility and joint compatibility (observation model) functions in a Markov Random Field (MRF). Thus, we formulate the 2D lattice detection as a spatial, multitarget tracking problem, solved within an MRF framework using a novel and efficient Mean-Shift Belief Propagation (MSBP) method. Iterative detection and growth of the deformed lattice are interleaved with regularized thin-plate spline (TPS) warping, which rectifies the current deformed lattice into a regular one to ensure stability of the MRF model in the next round of lattice recovery. We provide quantitative comparisons of our proposed method with existing algorithms on a diverse set of 261 real-world photos to demonstrate significant advances in accuracy and speed over the state of the art in automatic discovery of regularity in real images. [details] [pdf] [code]

Comments

    Author

    Write something about yourself. No need to be fancy, just an overview.

    Archives

    December 2016

    Categories

    All

    RSS Feed

Powered by Create your own unique website with customizable templates.
  • Home
  • Nvidia AV Visual Perception
  • Tesla Vision
  • RESUME
  • Publication
  • Past Project